`a^2+a+1/4 = a^2 + 2.a. 1/2 + (1/2)^2 = (a+1/2)^2`
`a^2+a+1/4 = a^2 + 2.a. 1/2 + (1/2)^2 = (a+1/2)^2`
Chứng minh rằng : a2+b2+ 1/ a2+1/b2 > hoặc = 4
1) Rút gọn
a) (3x - 2)2 - (1+ 5x)2
b) (3x + 4)(3x - 4) - (5 - x)2
c) (\(\dfrac{1}{2}\)x + 4)2 - (\(\dfrac{1}{2}\)x + 3)(\(\dfrac{1}{2}\)x - 3)
Tính tích: A=\(\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)...\left(1-\dfrac{1}{10000}\right)\)
Giải pt
a, \(\dfrac{5x-1}{3x+2}\)= \(\dfrac{5x-7}{3x-1}\)
b, \(\dfrac{4x+7}{x-1}\)= \(\dfrac{12x+5}{3x+4}\)
c, 5 + \(\dfrac{96}{x^2-16}\)=\(\dfrac{2x-1}{x+4}\)- \(\dfrac{3x+1}{4-x}\)
Biết \(a+b=1\). Chứng minh rằng:
\(a,a^2+b^2\ge\dfrac{1}{2}\)
\(b,a^4+b^4\ge\dfrac{1}{8}\)
\(c,a^8+b^8\ge\dfrac{1}{128}\)
a4 mb4 m-(a mb m+1)(a2 mb2 m+1)(a mb m-1)
CMR Nếu \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) \(thì (a+b)\)\(\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)...\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\)
tính giá trị của BT \(a^4+b^{4^{ }}+c^4+\dfrac{1}{4}\) biết a+b+c = 0 và \(a^2+b^2+c^2=1\)
giải pt sau
g) 11+8x-3=5x-3+x
h)4-2x+15=9x+4-2x
g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
h)\(\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)
i)\(\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
k) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{xx+7}{15}\)
n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)
p)\(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-x\)
q)\(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)