\(a,\left(x+y\right)^2:\left(x+y\right)=x+y\)
\(b,\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(x-y\right)^4=x-y\)
\(c,\left(x-y+z\right)^4:\left(x-y+z\right)^3=x-y+z\)
chúc bạn hok tốt! ![]()
\(a,\left(x+y\right)^2:\left(x+y\right)=x+y\)
\(b,\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(x-y\right)^4=x-y\)
\(c,\left(x-y+z\right)^4:\left(x-y+z\right)^3=x-y+z\)
chúc bạn hok tốt! ![]()
Phân tích các đa thức sau thành nhân tử
1/. y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2
2/. 8x3(y+z)-y3(z+2x)-z3(2x-y)
3/. (x2+x)2-2(x2+x)-15
4/. (4x+1).(12x-1).(3x+2).(x+1)-4
5/. x2(y-z)+y2(z-x)+z2(x-y)
6/. x4-2x3+2x-1
Làm tính chia:
1. (x2 + x + 1)4 : (x2 + x + 1)3
2. (x - y)5 : (y - x)3
3. (x - y)5 : (y - x)2
4. 5(x - y) : \(\frac{5}{6}\)(y - x)
5. 8x2y : 4xy
6. (-\(\frac{3}{4}\)x4y5z) : \(\frac{4}{5}\)x3y3z.
7. x2n : x2n - 3 (n ≥ 2)
CMR những đẳng thức sau:
a, (x-1) (\(x^2\)+x+1)= \(x^3-1\)
b, (\(x^3+x^2y+xy^2+y^3\)) (x-y)=\(x^4-y^4\)
c,\(\left(x+y+z\right)^2=x^{ }^2+y^2+z^2+2xy+2xz+2yz\)
d,\(\left(x+y+z\right)^3=x^3+y^3+x^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Tìm x, y, z biết rằng: \(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\)
Tìm x,y,z , biết
a) \(\dfrac{x}{3}\) = \(\dfrac{y}{4}\) ; \(\dfrac{y}{3}\) = \(\dfrac{z}{5}\) và 2x - 3y + z =6
b) 2x = 3y = 5z và x + y - z = 95
c) x : y : z = 2: 3 : 4 và x\(^2\) + y\(^2\) z\(^2\) = 116
ĐA THỨC ĐỊNH DANH
A. (x-y-z)\(^2\)
B. (x+y+1)(x+y-1) G.(3x+2y)(3x-2y)
C.(x+5)(x-5) + (y-x)(y+x) H.(x+y+1)\(^2\)
D.(x+2y)(x-2y) I.(x+y+4)(x+y-4)
E.(x+21).(x+19)
Các bạn giúp mình nhé! Mình cảm ơn nhiều!
Đây là một số bất đẳng thức trích từ một số đề thi vào chuyên,rất mong nhận được lời giải từ mọi người :
Bài 1:Cho x,y,z >0 thỏa mãn x+y+z=1
Tìm Max Q= \(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
Bài 2:Cho x,y,z>0 thỏa mãn :x+y+z=1
Chứng minh:\(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
Bài 3:Cho x,y,z>8
Tìm Min P=\(\dfrac{x}{\sqrt{y+z}-4}+\dfrac{y}{\sqrt{z+x}-4}+\dfrac{z}{\sqrt{x+y}-4}\)
Bài 4: Cho a,b,c>0 thỏa mãn (a+b)(b+c)(c+a)=1
CMR: ab+bc+ca\(\le\dfrac{3}{4}\)
Cho x, y, z dương thỏa mãn \(\left\{{}\begin{matrix}x^2+xy+y^2=1\\y^2+yz+z^2=\dfrac{1}{4}\\x^2+xz+z^2=\dfrac{3}{4}\end{matrix}\right.\)
Tính B=x+y+z
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)