a) \(\sqrt{\dfrac{2-\sqrt{3}}{2}}+\dfrac{1-\sqrt{3}}{2}\)
= \(\sqrt{\dfrac{4-2\sqrt{3}}{4}}+\dfrac{1-\sqrt{3}}{2}\)
= \(\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}+\dfrac{1-\sqrt{3}}{2}\)
= \(\dfrac{\sqrt{3}-1+1-\sqrt{3}}{2}\)
= 0
b) \(\sqrt{41+6\sqrt{6}-12\sqrt{10}-4\sqrt{15}}+2\sqrt{5}-\sqrt{3}\)
= \(\sqrt{18+20+3+2\sqrt{54}-2\sqrt{360}-2\sqrt{60}}+2\sqrt{5}-\sqrt{3}\)
= \(\sqrt{\left(\sqrt{18}-\sqrt{20}+\sqrt{3}\right)^2}+2\sqrt{5}-\sqrt{3}\)
= \(\sqrt{18}-2\sqrt{5}+\sqrt{3}+2\sqrt{5}-\sqrt{3}\)
= \(\sqrt{18}\)