a, Ta có : \(\frac{a}{9}=\frac{5}{45}\)
=> \(45a=45\)
=> a = 1
b, Ta có : \(-\frac{6}{b}=\frac{18}{36}\)
=> \(18b=-216\)
=> \(b=-12\)
a)Ta có a/9=5/45 b)Ta có-6/b=18/36
⇒45a=45 ⇒18b=-216
⇒a=1 ⇒b= -12
a, Ta có : \(\frac{a}{9}=\frac{5}{45}\)
=> \(45a=45\)
=> a = 1
b, Ta có : \(-\frac{6}{b}=\frac{18}{36}\)
=> \(18b=-216\)
=> \(b=-12\)
a)Ta có a/9=5/45 b)Ta có-6/b=18/36
⇒45a=45 ⇒18b=-216
⇒a=1 ⇒b= -12
Tính nhanh (nếu có thể):
\(a,\frac{\frac{3}{41}-\frac{12}{47}+\frac{27}{53}}{\frac{4}{41}-\frac{16}{47}+\frac{36}{53}}+\frac{-0,25.\frac{-2}{3}-75\%:(\frac{-1}{2}+\frac{2}{3})}{|-1\frac{1}{2}|.(\frac{-2}{3}-0,75:\frac{3}{-2})}\)
\(b,A=158.(\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}).\frac{50550505}{711711711}\)
Bài 1:Tìm x,biết
a) \(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)
b)\(x+\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}=\frac{2}{3}\)
c)\(x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}=\frac{5}{24}\)
d)\(8-\frac{8-\frac{8}{5}+\frac{8}{25}-\frac{8}{125}}{9-\frac{9}{5}+\frac{9}{25}-\frac{9}{125}}:\frac{161616}{151515}=\frac{4+\frac{4}{73}-\frac{4}{115}}{5+\frac{5}{73}-\frac{1}{23}}\)
bài 1
a, 27 + 46 + 68 + 54 +73
b,2016 - ( 2016 -2017)
c, \(\frac{2}{3}+\frac{1}{3}.\left(\frac{-4}{9}+\frac{5}{6}\right):\frac{7}{12}\)
Sắp xếp theo thứ tự tăng dần
b\(\frac{23}{30};\frac{-38}{45};\frac{7}{12};\frac{-17}{20};\frac{13}{18}\)
Tính nhanh ( nếu có thể):
\(a,-3^2+\left\{-52:[\left(-3\right)^2\right\}\) \(d,(\frac{377}{-231}-\frac{123}{89}+\frac{34}{791}):(\frac{1}{6}-\frac{1}{8}-\frac{1}{24})\)
\(b,2\frac{3}{7}+(\frac{2}{9}-1\frac{3}{7})-\frac{5}{3}:\frac{1}{9}\) \(e,\frac{-5}{13}:\frac{3}{7}-\frac{2}{7}.\frac{8}{13}+\frac{5}{13}.\frac{1}{7}\)
\(c,\frac{-11}{23}.\frac{6}{7}+\frac{8}{7}.\frac{-11}{23}-\frac{1}{23}\)
bài 1
a, \(\left(-\frac{2}{5}\right):\left[\frac{-3}{5}+\frac{3}{2}\right]\)
b,\(\frac{-5}{2016}.\frac{2}{11}+\frac{-5}{2016}.\frac{9}{11}+1\frac{5}{2016}\)
Bài 1 : Chứng tỏ rằng : \(\frac{14n+3}{21n+5}\) là phân số tối giản với mọi n ϵ Z
Bài 2 Tìm x , biết
30 : \(\left(\frac{1}{4}x+\frac{3}{4}x\right)^2=\frac{5}{6}\)
Bài 3 Tính tích : A= \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)
\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(\frac{3}{41}-\frac{12}{47}+\frac{27}{53}\)
------------------
\(\frac{4}{41}-\frac{16}{47}+\frac{36}{53}\)
bài 1
a, \(\frac{-3}{7}\)-\(\left\{\frac{2}{3}-\frac{3}{7}\right\}\) b,\(\frac{2}{15}:\left[\frac{1}{3}.\frac{4}{5}-\frac{1}{3}.\frac{6}{5}\right]\)