giải hệ phương trình và phương trình sau
1 , x4 - \(\frac{1}{2}\)x3 - x2 - \(\frac{1}{2}\)x + 1 = 0
2, x4 + 3x2 -\(\frac{35}{4}\)x2 -3x + 1 = 0
3, 2x4 + 5x3 + x2 + 5x + 2 = 0
4 , x4 + 5x3 + 12x + 20 + 16 = 0
5, 16x4 - 24x3 + 16x2 - 6x +1 = 0
6, 27x4 - 6x3 - 37x2 + 4x + 12 = 0
7, x4 + ( x - 1 ) ( x2 + 2x + 2 ) = 0
8, ( x- 4 )2 + ( x - 2 ) ( 5x2 - 14x + 13 ) +1 = 0
9 , ( x2 - x ) 2 - 2x ( 3x - 5 ) - 3 = 0
a/ (x2 +2x)2 - (3x+2)2=0
b/ (x+2)2 - 3|x+2| - 4=0
c/ (x-1)(x2-3x-4)
giải hệ phương trình và phương trinh sau
1, 2x4 - 5x3 + 6x2 - 5x + 2 = 0
2, 9x4 - 30 x3 + 15x2 - 10x + 1
3 , 8x4 - 10x3 - 6x2 +5x + 2
4 , x4 + 4x3 + x2 + 4x +1 = 0
5 , 2x4 - 21x3 + 74x2 + 105x + 50 = 0
6 , 2x4 + x3 - 11x2 + x + 2 = 0
7 , 2x4 + 3x3 -16x2 +3x + 2 = 0
8, x4 - 2x3 - 6x2 + 16x + 8 = 0
Giải hệ phương trình:\(\left\{{}\begin{matrix}x^3+xy^2+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+2y^2+xy+2x-4=0\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}y\left(x+y+1\right)=3\\\left(x+y\right)^2-\dfrac{4}{y^2}=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
Em đang cần gấp ạ !!! Cảm ơn mọi người nhiều ạ !!!
phương phát rút 1 ẩn phương trình (1) thế vào phương trình (2)
1 ,\(\left\{{}\begin{matrix}x-y=1+y\\2+x+y+xy=0\end{matrix}\right.\)
2 , \(\left\{{}\begin{matrix}x+2y=4\\x^2-3y^2-xy+2x-5y-4=0\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}x^2+xy=2\\2x^2-y^2=11\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}-x^2+y^2=10\\x+y=4\end{matrix}\right.\)
Giải phương trình sau :
\(\frac{4}{x}+\frac{3}{x-2}< 0\)
Giải các phương trình sau :
1 ) \(\frac{2x+3}{x^2+x+1}\) < 0
2) \(\frac{4}{x}+\frac{3}{x-2}\)< 0
3) \(\frac{5}{x+1}>\frac{1}{x-3}\)
giải hệ pt
3x3 +(5-y)x2 - 2xy - 2x =0
x2 - x + y = -4