Chứng minh: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\).
1) \(CMR:\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+......+\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)
Chỉ tick cho ai nhanh nhất
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+......+\frac{1}{2013.2014}\)
B=\(\frac{1}{1008.2014}+\frac{1}{1009.2013}+\frac{1}{1010.2012}+......+\frac{1}{2014.1008}\)
Chứng tỏ rằng:\(\frac{A}{B}\) là số nguyên
Chứng tỏ:\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}=\frac{99}{50}-\frac{97}{45}+...+\frac{7}{4}-\frac{5}{3}=1\)
Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)
Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2
Bài 3: Tính giá trị của biểu thức sau:
\(A=\left(\frac{1}{7}+\frac{1}{23}-\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{2}{2009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{2009}\right)+1:\left(30.1009-160\right)\)
Bài 4: Tính nhanh:
\(\text{a) 35 . 34 + 35 . 86 + 67 . 75 + 65 . 45}\)
\(\text{b) 21 . }7^2-11.7^2+90.7^2+49.125.16\)
Bài 5: Thực hiện phép tinh sau:
a. \(\frac{2181.729+243.81.27}{3^2.9^2.234+18.54+162.9+723.729}\)
b. \(\frac{1}{1.2+}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
c. \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
d. \(\frac{5.4^{15}-9^9-4.3^{20}}{5.2^{19}.6^{19}-7.2^{29}.27^6}\)
giúp mk nha! nhớ viết cách làm nha!
tính giá trị của biểu thức
a) A=\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + ...+\(\frac{1}{99.100}\)
b) B= \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\) + \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\) +...+\(\frac{2}{97.99}\)
Chứng minh
\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
Các bn giúp mik kiểm tra nha bị mắc chứng thiếu tự tin rùi
Bài 1: Chứng tỏ các tổng sau không là số tự nhiên:
a. A= \(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)
b. B= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}\)
c. C= \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Bài 2: Chứng tỏ rằng:
a. A= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{20}>\frac{1}{2}\)
b. B=\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}>\frac{1}{2}\)
c. C= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{100}>1\)
d. D=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
Bài 3: Cho S= \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}.\)Chứng minh rằng \(\frac{3}{5}< S< \frac{4}{5}\)
Bài 4: Cho B= \(\frac{10n}{5n-3}\), tìm số nguyên n để:
a. B có giá trị nguyên b. B có GTLN
Chứng minh rằng :
a) \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
b) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)