Ta có:\(5^{x+4}-3\cdot5^{x+3}=2\cdot5\)
\(5^x\cdot5^4-3\cdot5^x\cdot5^3=10\)
\(5^x\left(5^4-3\cdot5^3\right)=10\)
\(5^x\cdot250=10\)
\(5^x=10:250\)
\(5^x=\frac{1}{25}\)
\(5^x=5^{-2}\)
\(\Rightarrow x=-2\)
\(5^{x+4}-3.5^{x+3}=2.5\)
\(\Rightarrow5^{x+3}.5-3.5^{x+3}=2.5\)
\(\Rightarrow5^{x+3}.\left(5-3\right)=2.5\)
\(\Rightarrow5^{x+3}.2=2.5\)
\(\Rightarrow5^{x+3}=5\)
\(\Rightarrow x+3=1\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\)