ĐKXĐ của pt : \(x\ge-\frac{1}{2}\)
Ta có \(4x^3+x-\left(x+1\right)\sqrt{2x+1}=0\)
\(\Leftrightarrow-\left(x+1\right)\left(\sqrt{2x+1}-2x\right)-2x\left(x+1\right)+4x^3+x=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-\sqrt{2x+1}\right)+x\left[4x^2-\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-\sqrt{2x+1}\right)+x\left(2x-\sqrt{2x+1}\right)\left(2x+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{2x+1}\right)\left(x+1+2x^2+x\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-\sqrt{2x+1}=0\\x+1+2x^2+x\sqrt{2x+1}=0\end{array}\right.\)
TH1. Nếu \(2x-\sqrt{2x+1}=0\Rightarrow4x^2=2x+1\Leftrightarrow4x^2-2x-1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1+\sqrt{5}}{4}\\x=\frac{1-\sqrt{5}}{4}\end{array}\right.\) . Thay hai giá trị vào pt được \(x=\frac{1+\sqrt{5}}{4}\) thỏa mãn.
TH2. Nếu \(x+1+2x^2+x\sqrt{2x+1}=0\), thay x từ điều kiện \(x\ge-\frac{1}{2}\) được \(x+1+2x^2+x\sqrt{2x+1}\ge1>0\). Do đó pt này vô nghiệm.
Vậy kết luận : tập nghiệm của pt : \(S=\left\{\frac{1+\sqrt{5}}{4}\right\}\)
\(4x^3+x-\left(x+1\right)\sqrt{2x+1}=0\)
\(\Leftrightarrow4x^3+x=\left(x+1\right)\sqrt{2x+1}\)
2 vế luôn dương bình lên có:
\(\left(4x^3+x\right)^2=\left[\left(x+1\right)\sqrt{2x+1}\right]^2\)
\(\Leftrightarrow16x^6+8x^4+x^2=2x^3+5x^2+4x+1\)
\(\Leftrightarrow16x^6+8x^4-2x^3-4x^2-4x-1=0\)
\(\Leftrightarrow\left(4x^2-2x-1\right)\left(4x^4+2x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\begin{cases}4x^2-2x-1=0\\4x^4+2x^3+4x^2+2x+1>0\end{cases}\)
\(\Leftrightarrow4x^2-2x-1=0\)
Delta=(-2)2-(-4(4.1))=20
Đối chiếu với điều kiện khi bình phương ta có:
\(x=\frac{\sqrt{5}+1}{4}\left(tm\right)\)
Phương trình đã cho tương đương:
\(4x^2-2x-1=0\)
Và phương trình còn lại ta xét hàm vế trái trên khoảng: \(x\ge-\frac{1}{2}\)
Ta có phương trình: \(f\left(t\right)=t+\frac{t+1}{2t+\sqrt{2x+1}}\) với \(x\ge-\frac{1}{2}\)
\(f'\left(t\right)=1+\frac{2x+\sqrt{2x+1}-\left(x+1\right)\left(2+\frac{1}{\sqrt{2x+1}}\right)}{\left(\left(2x+\sqrt{2x+1}^2\right)\right)}\)
Nhận xét: \(2x+\sqrt{2x+1}-\left(x+1\right)\left(2+\frac{1}{\sqrt{2x+1}}\right)>0\) với mọi \(x\ge-\frac{1}{2}\)
=> Pt còn lại vô nghiệm