4)
a,
\(34^2+66^2+68\cdot66\\ =34^2+68\cdot66+66^2\\=34^2+2\cdot34\cdot68+66^2\\ =\left(34+66\right)^2\\ =100^2 =10000\)
b,
\(74^2+24^2-48\cdot74\\ =74^2-48\cdot74+24^2\\ =74^2-2\cdot24\cdot74+24^2\\ =\left(74-24\right)^2\\ =50^2=2500\)
c,
\(729^2-728^2\\ =\left(729+728\right)\left(729-728\right)\\ =1457\cdot1\\ =1457\)
d,
\(1001^2-1\\ =1001^2-1^2\\ =\left(1001+1\right)\left(1001-1\right)\\ =1002\cdot1000\\ =1002000\)
5)
a,
\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =1\cdot\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)\\ =2^{16}-1\)
b,
\(7\cdot\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\\ =\left(2^3-1\right)\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\\ =\left(2^6-1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\\ =\left(2^{12}-1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\\ =\left(2^{24}-1\right)\left(2^{24}+1\right)\\ =2^{48}-1\)