\(\Leftrightarrow4\left(sin^3x+cos^3x\right)-6sinx.cosx-4\left(sinx+cosx\right)=0\)
\(\Leftrightarrow4\left(sinx+cosx\right)^3-12sinx.cosx\left(sinx+cosx\right)-6sinx.cosx-4\left(sinx+cosx\right)=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(4t^3-6t\left(t^2-1\right)-3\left(t^2-1\right)-4t=0\)
\(\Leftrightarrow-2t^3-3t^2+2t+3=0\)
\(\Leftrightarrow\left(t^2-1\right)\left(2t+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t^2=1\\t=-\frac{3}{2}\left(l\right)\\\end{matrix}\right.\) \(\Rightarrow\left(sinx+cosx\right)^2=1\)
\(\Leftrightarrow2sinx.cosx=0\Leftrightarrow sin2x=0\)
\(\Rightarrow x=\frac{k\pi}{2}\)