\(a.\left(x-3\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\\\Leftrightarrow x^2+4x-3x-12-6x+4=x^2-8x+16\\\Leftrightarrow x^2-x^2+4x-3x-6x+8x=+12-4+16=0\\\Leftrightarrow 3x=24\\\Leftrightarrow x=8\)
Vậy \(x=8\) để \(A=B\)
\(b.\left(2+x\right)\left(x-2\right)+3x^2=\left(2x+1\right)^2+2x\\\Leftrightarrow x^2-4+3x^2=4x^2+4x+1+2x\\ \Leftrightarrow x^2+3x^2-4x^2-4x-2x=4+1\\ \Leftrightarrow-6x=5\\\Leftrightarrow x=-\frac{5}{6}\)
Vậy \(x=-\frac{5}{6}\) để \(A=B\)
Bạn xem lại đề b nhé
\(c.\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\\\Leftrightarrow x^3-1-2x=x\left(x^2-1\right)\\ \Leftrightarrow x^3-1-2x=x^3-x\\\Leftrightarrow x^3-x^3-2x+x=1\\\Leftrightarrow -x=1\\\Leftrightarrow x=-1\)
Vậy \(x=-1\) để \(A=B\)
\(\left(x+1\right)^3-\left(x-2\right)^3=\left(3x-1\right)\left(3x+1\right)\\\Leftrightarrow 3\left(x^2+2x+1+x^2-2x+x-2+x^2-4x+4\right)=9x^2-1\\\Leftrightarrow 9x^2-9x+9=9x^2-1\\\Leftrightarrow 9x^2-9x^2-9x=-9-1\\\Leftrightarrow -9x=-10\\ \Leftrightarrow x=\frac{10}{9}\)
Vậy \(x=\frac{10}{9}\) để \(A=B\)