Bài 2: Hoán vị, chỉnh hợp, tổ hợp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Khánh Linh

3. Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiều số trong các trường hợp sau: a) Có 6 chữ số khác nhau. b) Số chẵn có 4 chữ số khác nhau c) Số 3 chữ số trong do chữ số đứng sau nhỏ hơn chữ số đảng trước. d) Số có 3 chữ số khác nhau lớn hơn 300. e) Số có 7 chữ số, trong đó chủ số 1 xuất hiện 2 lần, các chữ số khác xuất hiện 1 lần.

Phan uyển nhi
17 tháng 2 2022 lúc 22:34

Giải

a, Có 6 chữ số khác nhau

Gọi số cần tìm là \(\overline{abcdef}\)

a có 5 cách chọn ( \(a\ne0\))

\(\overline{bcedf}\)có 5! cách chọn 

=> Có tất cả 5.5! = 600 (số)

Vậy có 600 số có 6 chữ số khác nhau

b, Gọi số có 4 chữ số cần tìm là \(\overline{abcd}\)

Vì \(\overline{abcd}\) là số chẵn nên d \(\in\left(0,2,4\right)\)

TH1: d=0

\(\overline{abc}\) có \(A_5^3\) cách chọn => 60 cách chọn

TH2 : d=(2,4) -> có 2 cách chọn 

a có 4 cách chọn ( a khác 0,d)

b có 4 cách chọn ( b khác a,d)

c có 3 cách chọn ( c khác a,b,d)

=> 4.4.3.2=96 số

Nên kết hợp hai trường hợp ta có 60+96=156 ( số)

Vậy có 156 số có 4 chữ số chẵn khác nhau

Phan uyển nhi
17 tháng 2 2022 lúc 22:43

c, Gọi số có 3 chữ số khác nhau là \(\overline{abc}\)

TH1:

 a = {4,5} -> có 2 cách

\(\overline{bc}\) có \(A_4^2\) cách chọn

=> Có 2.\(A_4^2\)=2.12=24 số

TH2: a=3 -> có 1 cách 

b={1,2,4,5} -> có 4 cách

c có 4 cách ( c khác a,b)

=> 4.4=16 (số)

TH3: a=3 -> có 1 cách chọn

b=0-> có 1 cách chọn

c={1,2,4,5} -> có 4 cách chọn

=> có 4 số

Nên ta có 24+16+4=44( số)

Vậy có tất cả 44 số có 3 chữ số khác nhau lớn hơn 300

 


Các câu hỏi tương tự
Trần Ngọc Phương Thảo
Xem chi tiết
Ngọc Như Vũ Phan
Xem chi tiết
Ngọc Nhã Uyên Hạ
Xem chi tiết
cong pham
Xem chi tiết
Trinh Trần Huỳnh Tú
Xem chi tiết
Hạ Nh
Xem chi tiết
Lý Tiểu Long
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Đỗ Tuấn Vinh
Xem chi tiết