a2 + b2 + c2 + d2 + e2 \(\ge\) a(b+c+d+e)
Xét: 4(a2+b2+c2+d2+e2) - 4(ab+ac+ad+ae)
= 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae
= (a2+4b2-4ab) + (a2+4c2-4ac) + (a2+4d2-4ad) + (a2+4e2-4ae)
= (a-2b)2 + (a-2c)2 + (a-2d)2 + (a-2e)2 \(\ge\) 0
=> 4(a2+b2+c2+d2+e2) \(\ge\) 4(ab+ac+ad+ae)
=> a2+b2+c2+d2+e2 \(\ge\) ab + ac + ad + ae