a,\(\sqrt{5X^2+X+3}-2\sqrt{5x-1}+X^2-3X+3=0\)
b,\(^{X^2-X-4+3X\sqrt{5-3X^2}=0}\)
giải pt: \(2x^4+5x^3+x^2+5x+2=0\)
Giải phương trình: (x + 4)(x + 1) - 3\(\sqrt{x^2+5x+6}\) + 4 = 0
5x^4-12x^3-41x^2+20=0. timf x
\(a,2x^2-9x+3+\sqrt{3x^2-7x+1}=0\)
b)\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\)
c)\(\text{4x^3-9x^2+7x-(3x-1)\sqrt{3x-2}=0}\)
d)\(2\sqrt{x-1}+\sqrt{5x-1}=x^2+1\)
e)\(\sqrt{x+2}+\sqrt{5x+6}+2\sqrt{8x+9}=4x^2\)
f)\(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\)
\(\left\{{}\begin{matrix}xy^2-x^2y-y^3+5x^2+y^2-y+1=0\\x^2-y-3x+2=0\end{matrix}\right.\)
a) |x+2| + |3-x|=5
b) (x+1).(x+4)-√x^2+5x+6<0
\(\begin{cases}x^3+3xy^2+x^2+y^2+x+1=2y^3+3x^2y+xy+2y\\x\left(2y-1\right)-5x-2y+5=0\end{cases}\)