ĐK: `x \ne 4 ;x \ne -2`
`(2x-5)/(x-4)=(2x+1)/(x+2)`
`<=> (2x-5)(x+2)=(x-4)(2x+1)`
`<=> 2x^2 +4x-5x-10=2x^2+x-8x-4`
`<=>-x-10=-7x-4`
`<=>7x-x=-4+10`
`<=>6x=6`
`<=>x=1` (TM)
Vậy `x=1`.
\(\dfrac{2x-5}{x-4}=\dfrac{2x+1}{x+2}\)
\(< =>\left(2x-5\right)\left(x+2\right)=\left(x-4\right)\left(2x+1\right)\)
\(< =>2x^2-5x+4x-10=2x^2-8x+x-4\)
\(< =>2x^2-x-10-2x^2+7x+4=0\)
\(< =>6x-6=0\)
\(< =>6x=6\)
\(< =>x=6:6=1\)
Vậy....
\(\dfrac{2x-5}{x-4}=\dfrac{2x+1}{x+2}\) (1)
ĐKXĐ: x ≠ 4; x ≠ -2
PT (1) \(\Leftrightarrow\left(2x-5\right)\left(x+2\right)=\left(x-4\right)\left(2x+1\right)\)
\(\Leftrightarrow2x^2+4x-5x-10=2x^2+x-8x-4\)
\(\Leftrightarrow2x^2+4x-5x-10-2x^2-x+8x+4=0\)
\(\Leftrightarrow6x-6=0\)
<=> 6x = 6
<=> x = 1
Vậy S = {1}