\(+,x\ge\frac{3}{2}\Rightarrow2x-3\ge0\Rightarrow\left|2x-3\right|=2x-3\Rightarrow x-3=21\Rightarrow x=24\left(\text{thoaman}\right)\)
\(+,x< \frac{3}{2}\Rightarrow2x-3< 0\Rightarrow\left|2x-3\right|=3-2x\Rightarrow3-3x=21\Rightarrow x=-6\left(\text{thoaman}\right)\)
2.\(\left|\frac{1}{2}x-\frac{1}{3}\right|-\left|\frac{1}{3}x+\frac{1}{2}\right|=0\Leftrightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\left|\frac{1}{3}x+\frac{1}{2}\right|\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-\frac{1}{3}=\frac{1}{3}x+\frac{1}{2}\\\frac{1}{2}x-\frac{1}{3}=-\frac{1}{2}-\frac{1}{3}x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{6}x=\frac{5}{6}\\\frac{5}{6}x=-\frac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\frac{1}{30}\end{matrix}\right.\)