\(\left(2\sqrt{3}+\sqrt{15}\right)\sqrt{3}-2\sqrt{45}=6+3\sqrt{5}-6\sqrt{5}=6-3\sqrt{5}\)
..= 6 + \(3\sqrt{5}\) - 2.\(3\sqrt{5}\)
= 6 -\(3\sqrt{5}\)
\(\left(2\sqrt{3}+\sqrt{15}\right)\sqrt{3}-2\sqrt{45}=6+3\sqrt{5}-6\sqrt{5}=6-3\sqrt{5}\)
..= 6 + \(3\sqrt{5}\) - 2.\(3\sqrt{5}\)
= 6 -\(3\sqrt{5}\)
* Rút gọn biểu thức
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
- Rút gọn biểu thức
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
rút gọn biểu thức
a.\(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b.\(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c.\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d.\(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
Tính
\(A=\sqrt{20}-3\sqrt{8}+5\sqrt{45}\)
\(B=\dfrac{30}{\sqrt{7}-1}+\dfrac{15}{\sqrt{7}+2}\)
\(C=\left(3-\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3+\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(E=\sqrt{7-4\sqrt{3}}-\sqrt{3+2\sqrt{3}}\)
Rút gọn các biểu thức sau :
a/\(\sqrt{4-\sqrt{15}} -\sqrt{2+\sqrt{3}}\)
b/\(\sqrt{4+\sqrt{15}}+ \sqrt{7-\sqrt{45}}\)
c/\(\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}} -\sqrt{6-2\sqrt{5+\sqrt{13-4\sqrt{3}}}}\)
Rút gọn : \(\dfrac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(\dfrac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}\) - \(\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
rút gọn
Tính:
a) \(\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3}-\sqrt{2}}\)
b)\(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}\)
TÍNH
a, \(\sqrt{\left(2\sqrt{5}-7\right)^2}-\sqrt{45-20\sqrt{5}}\)
b,\(\frac{10\sqrt{6}-12}{\sqrt{6}-5}-3\sqrt{\frac{2}{3}}+\frac{15}{\sqrt{6}-1}\)