D=2+22+23+24+...+299+2100
(2√2 + 8)^(x - 1) >= (2√2 - 8)^(3 - x^2)
3.5mũ 2-16:2 mũ 2=
20-[30-(2-1)]=
2 mũ 3 x 17 - 2 mũ 3x 14=
Rút gọn biểu thức
\(\frac{1}{a^2}\sqrt[3]{a^6+3a^4b^2+3a^2b^4+b^6}-\left[\frac{a^2-\left(a^{\frac{2}{3}}-b^{\frac{2}{3}}\right)^3+2b^2}{a^2+\left(a^{\frac{2}{3}}-b^{\frac{2}{3}}\right)^3+2b^2}\right]\)
Cho a;b;c >=0 thỏa mãn \(a^2+b^2+c^2=3\)
\(CMR:\dfrac{a}{b+2}+\dfrac{b}{c+2}+\dfrac{c}{a+2}\le1\)
Rút gọn biểu thức P = a √ 3+1 · a 2− √ 3 Ä a √ 2−2 ä √ 2+2 với a > 0.
Có tất cả bao biêu bộ ba số thực (x,y,z) thỏa mãn đồng thời các điều kiện dưới đây \(2^{\sqrt[3]{x^2}}.4^{\sqrt[3]{y^2}}.16^{\sqrt[3]{z^2}}=128\) và \(\left(xy^2+z^4\right)^2=4+\left(xy^2-z^4\right)^2\)
Tính :
a) \(2^{2-3\sqrt{5}}.8^{\sqrt{5}}\)
b) \(3^{1+2\sqrt[3]{2}}:9^{\sqrt[3]{2}}\)
c) \(\dfrac{10^{2+\sqrt{7}}}{2^{2+\sqrt{7}}.5^{1+\sqrt{7}}}\)
d) \(\left(4^{2\sqrt{3}}-4^{\sqrt{3}-1}\right).2^{-2\sqrt{3}}\)
Đơn giản các biểu thức sau :
\(H=\left[\frac{a^{\frac{3}{2}}-b^{\frac{3}{2}}}{a^{\frac{1}{2}}-b^{\frac{1}{2}}}+\left(ab\right)^{\frac{1}{2}}\right]\left(\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a-b}\right)^2\)