\(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\)
= \(2\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}\right)\)
= \(2\left(\dfrac{1}{1.3}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.12}+\dfrac{1}{12.16}\right)\)
= \(\dfrac{2}{3}+2\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+2\left(\dfrac{2}{4.6}+\dfrac{2}{6.8}\right):2+\dfrac{1}{2}\left(\dfrac{4}{8.12}+\dfrac{4}{12.16}\right)\)
= \(\dfrac{2}{3}+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}\)
= \(\dfrac{127}{96}\)