Giải:
a) \(\left|48-3x\right|=0\)
\(\Leftrightarrow48-3x=0\)
\(\Leftrightarrow3x=48\)
\(\Leftrightarrow x=\dfrac{48}{3}=16\)
Vậy x = 16.
b) \(\left|-x-7\right|=24\)
\(\Leftrightarrow\left[{}\begin{matrix}-x-7=24\\-x-7=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=31\\-x=-17\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-31\\x=17\end{matrix}\right.\)
Vậy \(x=-31\) hoặc \(x=17\).
c) \(\left|4-x\right|=21\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=21\\4-x=-21\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-17\\x=25\end{matrix}\right.\)
Vậy \(x=-17\) hoặc \(x=25\).
d) \(\left|x+8\right|+12=0\)
\(\Leftrightarrow\left|x+8\right|=-12\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=-12\\x+8=-\left(-12\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-20\\x=4\end{matrix}\right.\)
Vậy \(x=-20\) hoặc \(x=4\).
e) \(6-\left|x\right|=2\)
\(\Leftrightarrow\left|x\right|=6-2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
Vậy \(x=4\) hoặc \(x=-4\).
Chúc bạn học tốt!
1. |48 - 3x| = 0.
\(\Leftrightarrow\) 48 - 3x = 0.
\(\Leftrightarrow\) 3x = 48.
\(\Leftrightarrow\) x = \(\dfrac{48}{3}=16.\)
Vậy x = 16.
2. |-x - 7| = 24.
\(\Leftrightarrow\left[{}\begin{matrix}-x-7=24.\\-x-7=-24.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=31.\\-x=-17.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-31.\\x=17.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-31.\\x=17.\end{matrix}\right.\)
3. |4 - x| = 21.
\(\Leftrightarrow\left[{}\begin{matrix}4-x=21.\\4-x=-21.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-17.\\x=25.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17.\\x=25.\end{matrix}\right.\)
4. |x + 8| + 12 = 0.
|x + 8| = 0 - 12.
|x + 8| = -12.
\(\Leftrightarrow\left[{}\begin{matrix}x+8=-12.\\x+8=-\left(-12\right).\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=-12.\\x+8=12.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-20.\\x=4.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-20.\\x=4.\end{matrix}\right.\)
5. 6 - |x| = 2.
|x| = 6 - 2.
|x| = 4.
\(\Leftrightarrow\left[{}\begin{matrix}x=4.\\x=-4.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=4.\\x=-4.\end{matrix}\right.\)
1. Ta có 2 trường hợp:
TH1: 48-3x=0 <=> 3x=48 <=> x=16
TH2:-48-3x=0