Bài 1:
Ta có:
\(\left|x+19\right|\ge0\)
\(\left|x+5\right|\ge0\)
\(\left|x+2011\right|\ge0\)
\(\Rightarrow\left|x+19\right|+\left|x+5\right|+\left|x+2011\right|\ge0\)
\(\Rightarrow4x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+19\right|+\left|x+5\right|+\left|x+2011\right|=x+19+x+5+x+2011\)
\(\Rightarrow x+19+x+5+x+2011=4x\)
\(\Rightarrow3x+2035=4x\)
\(\Rightarrow x=2035\)
Vậy \(x=2035\)
Bài 2:
\( \left|a\right|+\left|b\right|\ge\left|a+b\right|\) (*)
Bình phương 2 vế của (*) ta có:
\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2\left|ab\right|\ge a^2+b^2+2ab\)
\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng)
Đẳng thức xảy ra khi \(ab\ge0\)