1/Tìm tập xác định của hàm số sau: y=√3-4x +\(\frac{2x+3}{x^2-3x+2}\)
2/Xét tính chẵn lẻ của hàm số sau:f(x)=\(\frac{-x^6+5x^4-3x^2}{x^2-1}\)
3/Cho hàm số y =ax2 +bx+3:
a/Tìm a,b biết parabol có trục đối xứng x=-2 và đi qua A(-1;0)
b/Lập bảng biến thiên và vẽ đồ thị hàm số trên khi a=1; b=4
mọi người giúp mình với ạ mình cần gấp lắm
1, y xác định \(\Leftrightarrow\left\{{}\begin{matrix}3-4x\ge0\\x^2-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{3}{4}\\x\ne1,x\ne2\end{matrix}\right.\Leftrightarrow x\le\frac{3}{4}\)
2, Tập xác định: D = R\{\(\pm1\)}
Xét f(-x) = \(\frac{-\left(-x\right)^6+5\left(-x\right)^4-3\left(-x\right)^2}{\left(-x\right)^2-1}=\frac{-x^6+5x^4-3x^2}{x^2-1}=f\left(x\right)\)
\(\Rightarrow f\left(x\right)\) là hàm chẵn
3,
a, (P) có trục đối xứng x = - 2 \(\Leftrightarrow-\frac{b}{2a}=-2\Leftrightarrow-4a+b=0\left(1\right)\)
(P) đi qua A(-1;0) \(\Rightarrow x=-1;y=0\)thay vào (P) ta có:
\(a-b+3=0\Leftrightarrow a-b=-3\left(2\right)\)
Từ (1), (2) ta có a = 1, b = 4
\(\Rightarrow\)(P): \(x^2+4x+3\)
b, Tập xác định: D = R
BBT
x \(-\infty\) -2 \(+\infty\)
y \(-\infty\) \(+\infty\)
-1
Bề lõm của nó hướng lên trên, bạn chịu khó vẽ nốt mũi tên đi lên và xuống giúp mình nhé