\(\left|x+\dfrac{4}{5}\right|-\dfrac{1}{7}=0\)
=>\(\left|x+\dfrac{4}{5}\right|=\dfrac{1}{7}\)
\(\left\{{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{1}{7}\\x+\dfrac{4}{5}=-\dfrac{1}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{23}{35}\\x=-\dfrac{33}{35}\end{matrix}\right.\)
Vậy S={\(-\dfrac{22}{35};-\dfrac{33}{35}\)}
\(\left|x+\dfrac{4}{5}\right|-\dfrac{1}{7}=0\)
➤ \(\left|x+\dfrac{4}{5}\right|=0+\dfrac{1}{7}\)
➤ \(\left|x+\dfrac{4}{5}\right|=\dfrac{1}{7}\)
➤ \(\left[{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{1}{7}\\x+\dfrac{4}{5}=\dfrac{-1}{7}\end{matrix}\right.\) ➤ \(\left[{}\begin{matrix}x=\dfrac{1}{7}-\dfrac{4}{5}=\dfrac{-23}{35}\\x=\dfrac{-1}{7}-\dfrac{4}{5}=\dfrac{-33}{35}\end{matrix}\right.\)
Vậy \(x=\dfrac{-23}{35}\) hoặc \(x=\dfrac{-33}{35}\)