Bài 1:Cho đường tròn (O;R), đường kính AB, dây cung BC=R
a, Tính các cạnh và các góc chưa biết của tam giác ABC theo R
b, Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn (O) ở D
CM: OD là đường trung trực của AC
tam giác ADC là hình gì? Vì sao?
c, CM: DC là tiếp tuyến của đường tròn (O)
d, Đường thẳng OD cắt đường tròn (O) tại I. Cm: I là tâm đường tròn nội tiếp tam giác ADC
Cho ba đường tròn (O1); (O2); (O3) cùng bán kính R tiếp xúc ngoài từng đôi một. Các tiếp tuyến chung ngoài cắt nhau từng đôi một tại A,B,C. Cho biết dạng của tam giác ABC và tính diện tích tam giác đó. Plsss help.
Cho ba đường tròn (O1); (O2); (O3) cùng bán kính R tiếp xúc ngoài từng đôi một. Các tiếp tuyến chung ngoài cắt nhau từng đôi một tại A,B,C. Cho biết dạng của tam giác ABC và tính diện tích tam giác đó. Pls help.
Cho hai đường tròn (A) và (B) tiếp xúc ngoài với nhau. Đường tròn (C;R) tiếp xúc trong với cả hai đường tròn này. Cho biết chu vi tam giác ABC=6(cm). Tính bán kính R. Giúp mình với.
Câu 4 (3.5 điểm) Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A, bán kính AH, kẻ các tiếp tuyến BD, CE với đường tròn tâm A (D, E là các tiếp điểm khác H). CMR:
a) Ba điểm D, A, E thẳng hàng; b) Biết BH=2 cm, HC = 8 cm hãy tính DE?
c) 𝐷𝐻𝐸̂ =900 d) DE tiếp xúc với đường tròn có đường kính BC.
Cho tam giác ABC nội tiếp đường tròn (O). Biết BC = 2cm , A =45^ . a. Tính diện tích hình tròn (O). b. Tính diện tích hình viên phân giới hạn bởi dây BC và cung nhỏ BC. C,Xác định vị trí của điểm A để diện tích tam giác ABC là lớn nhất. Tính diện tích lớn nhất đó .. Giúp tớ với
Câu 4: Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH.
1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH.
2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D.
a) Chứng minh BD là tiếp tuyến của đường tròn (C).
b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2 PE.QF = EF