1.Cho đa giác đều A1A2...A1990 có 1990 cạnh đều bằng 1. M là 1 điểm bất kì trên đường tròn ngoại tiếp đa giác . Gọi khoảng cách từ M đến các đỉnh của đa giác lần lượt là a1,a2, ... ,a1990. Chứng minh rằng a^2_1+a_2^2+...+a_{1990}ge1990.
2. Chứng minh rằng với mọi tam giác ta luôn có: Rge2r(R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp)
3. Cho đường tròn đường kính bằng 2 và n điểm A1,A2,...,An trên mặt phẳng . Chứng minh rằn...
Đọc tiếp
1.Cho đa giác đều A1A2...A1990 có 1990 cạnh đều bằng 1. M là 1 điểm bất kì trên đường tròn ngoại tiếp đa giác . Gọi khoảng cách từ M đến các đỉnh của đa giác lần lượt là a1,a2, ... ,a1990. Chứng minh rằng \(a^2_1+a_2^2+...+a_{1990}\ge1990\).
2. Chứng minh rằng với mọi tam giác ta luôn có: \(R\ge2r\)(R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp)
3. Cho đường tròn đường kính bằng 2 và n điểm A1,A2,...,An trên mặt phẳng . Chứng minh rằng ta có thể tìm được 1 điểm M trên đường tròn sao cho MA1+MA2+...+MAn \(\ge n\).
4. Gỉa sử a,b,c là các số dương và với số tự nhiên n bất kì có thể lập được 1 tam giác mà độ dài các cạnh lần lượt là an,bn,cn. Chứng minh rằng 2 trong 3 số a,b,c phải bằng nhau.
5. Trên mặt bàn đặt 50 cái đồng hồ có kim giờ và kim phút. Chứng minh rằng có 1 thời điểm nào đó tổng khoảng cách từ tâm mặt bàn đến các điểm đầu của kim phút lớn hơn tổng khoảng cách từ tâm mặt bàn đến tâm của các đồng hồ.( Xem mỗi đồng hồ là 1 hình tròn vẽ trên mặt bàn).