\(A=\sqrt{6\cdot3^2}+2\sqrt{6\cdot2^2}-\sqrt{6\cdot5^2}=3\sqrt{6}+4\sqrt{6}-5\sqrt{6}=2\sqrt{6}\)
\(A=\sqrt{6\cdot3^2}+2\sqrt{6\cdot2^2}-\sqrt{6\cdot5^2}=3\sqrt{6}+4\sqrt{6}-5\sqrt{6}=2\sqrt{6}\)
Rút gọn biểu thức
M = \(\dfrac{2}{\sqrt{7}-\sqrt{6}}-\sqrt{28}+\sqrt{54}\)
N= \(\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
thực hiện phép tính:\(\sqrt{\left(5-\sqrt{24}^{ }\right)^2}\)- \(\sqrt{\left(5+\sqrt{24}\right)^2}\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{2-x}=\dfrac{3x^2-2x+3}{x^2+1}\)
b) \(x^3-11x^2+36x-18=4\sqrt[4]{27x-54}\)
c) \(16x^4+5=6\sqrt[3]{4x^3+x}\)
d) \(\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}=\dfrac{2}{x}\)
A=(\(\dfrac{2\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}-1}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\))(\(3\sqrt{x}-\dfrac{\sqrt{x}+4}{\sqrt{x}-1}\))
a,rút gọn A b,tìm x để A<2
1, Rút gọn: A = \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
2, Giải phương trình: \(\sqrt{4x^2-12x+9}=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
Thực hiện phép tính rút gọn sau:
\(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)
\(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}-\dfrac{\sqrt{5}-5}{\sqrt{5}}\)
\(C=\dfrac{1}{\sqrt{3}+\sqrt{2}}+\sqrt{7-4\sqrt{3}}+\sqrt{2}\)
A=\(\left(\dfrac{x-5\sqrt{x}+4}{x\sqrt{x}-3x+2\sqrt{x}}-\dfrac{3\sqrt{x}+3}{\sqrt{x}+2-x}\right):\left(\dfrac{x-\sqrt{x}-6}{x-3\sqrt{x}}-\dfrac{x-2\sqrt{x}}{x-4\sqrt{x}+4}\right)+\sqrt{x}\)a). Rút gọn A
b). Cho a,b là 2 số dương thỏa mãn a+b≥4. tìm GTNN của biểu thức B=\(5a+11b+\dfrac{2}{a}+\dfrac{72}{b}\)
Cho a,b,c dương thỏa mãn : \(a+b+c\le3\)
Tìm GTLN của biểu thức
\(B=\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Giải phương trình:
a) \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
b) \(\sqrt{2x^2-1}+x\sqrt{2x-1}=2x^2\)
c) \(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
Cho ba số dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\). Tìm giá trị nhỏ nhất của biểu thức P= \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)