Bài 1:
\(A=7+7^3+7^5+...+7^{1999}\)
\(\Rightarrow A=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)
\(\Rightarrow A=\left(7+343\right)+7^4\left(7+7^3\right)+...+7^{1996}\left(7+7^3\right)\)
\(\Rightarrow A=350+7^4.350+...+7^{1996}.350\)
\(\Rightarrow A=\left(1+7^4+...+7^{1996}\right).350⋮35\)
\(\Rightarrow A⋮35\left(đpcm\right)\)
b2:
a) \(S=1+3+3^2+...+3^{49}\)
\(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(\Rightarrow S=\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)
\(\Rightarrow S=4+3^2.4+...+3^{48}.4\)
\(\Rightarrow S=\left(1+3^2+...+3^{48}\right).4⋮4\)
\(\Rightarrow S⋮4\left(đpcm\right)\)
c) \(S=1+3+3^2+...+3^{49}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{50}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{50}\right)-\left(1+3+3^2+...+3^{49}\right)\)
\(\Rightarrow2S=3^{50}-1\)
\(\Rightarrow S=\frac{3^{50}-1}{2}\left(đpcm\right)\)
\(A=7+7^3+7^5+...+7^{1999}\)
\(=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)
\(=\left(7+7^3\right)+7^4\left(7+7^3\right)+...+7^{1996}\left(7+7^3\right)\)
\(=350+7^4.350+...+7^{1996}.350\)
\(=350.\left(1+7^4+...+7^{1996}\right)\)
Vì \(350⋮35\) nên \(350.\left(7+7^4+...+7^{1996}\right)⋮35\)
Vậy \(A⋮35\)(đpcm)
2.
a, \(S=1+3+3^2+...+3^{49}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+2^{49}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)
\(=4+3^2.4+...+3^{48}.4\)
\(=4\left(1+3^2+...+3^{48}\right)\)
Vì \(4⋮4\) nên \(4\left(1+3^2+...+3^{48}\right)⋮4\)
Vậy \(S⋮4\) (đpcm)
c, \(S=1+3+3^2+...+3^{49}\)
\(3S=3+3^2+3^3+...+3^{50}\)
\(3S-S=\left(3+3^2+3^3+...+3^{50}\right)-\left(1+3+3^2+...+3^{49}\right)\)
\(2S=3^{50}-1\)
\(S=\left(3^{50}-1\right):2\) (đpcm)
b, Ta có: \(S=\left(3^{50}-1\right):2\)
\(=\left(3^{48}.3^2-1\right):2\)
\(=\left[\left(3^4\right)^{14}.9-1\right]:2\)
\(=\left[\overline{\left(...1\right)}^{14}.9-1\right]:2\)
\(=\left[\overline{\left(...1\right)}.9-1\right]:2\)
\(=\left[\overline{\left(...9\right)}-1\right]:2\)
\(=\overline{\left(...8\right)}:2\)
\(=\overline{...4}\)
Vậy chữ số tận cùng của S là 4