Sửa đề: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=1/2-1/100=49/100
Sửa đề: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=1/2-1/100=49/100
tinh:
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\) . Tính
tính giá trị của biểu thức
a) A=\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + ...+\(\frac{1}{99.100}\)
b) B= \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\) + \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\) +...+\(\frac{2}{97.99}\)
tinh:
a. \(\dfrac{3}{4}-1\dfrac{1}{2}+0,5:\dfrac{5}{12}\)
b. \(\left(-2\right)^2-1\dfrac{5}{27}.\left(-\dfrac{3}{2}\right)^3\)
c. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
Tính tổng sau: A=1.2+2.3+3.4+4.5+5.6+.....+99.100
tinh s
S=1.2+2.3+3.4+4.5+5.6+....+99.100
chứng tỏ rằng
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}< 1\)
Tính tổng :
\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...................+\frac{2}{98.99}+\frac{2}{99.100}\)
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)