Ta có:
Đặt A=1/2^2+1/3^2+1/4^2+...+1/2018^2<1/1.2+1/2.3+1/3.4+...+1/2017.2018 (1).
Từ (1) ta có:
1/n(n+1)=n+1-n/n(n+1) = n+1/n(n+1) - n/n(n+1) = 1/n - 1/n+1. (2)
Từ (2) ta có:
1/1.2+1/2.3+1/3.4+...+1/2017.2018
=1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018=1- 1/2018=2018/2018 - 1/2018=2017/2018<1.
Vậy A<1.