\(\dfrac{1}{2003.2002}-\dfrac{1}{2002.2001}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
= \(\dfrac{1}{2003.2002}-\left(\dfrac{1}{2002.2001}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
= \(\dfrac{1}{2003.2002}-\left(\dfrac{1}{2002}-\dfrac{1}{2001}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\right)\)
= \(\dfrac{1}{2003.2002}-\dfrac{1}{2002}+1\)
= \(\dfrac{1-2003+2003.2002}{2003.2002}\)
= \(1-\dfrac{2002}{2003.2002}=1-\dfrac{1}{2003}\) = \(\dfrac{2002}{2003}\)