Đặt \(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{5050}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{5050}\right)\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{10100}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow\frac{1}{2}A=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}:\frac{1}{2}=\frac{100}{101}.2=\frac{200}{101}=1\frac{99}{101}\)