10 + \(\dfrac{2\sqrt{10}}{\sqrt{5}}+\sqrt{2}+\dfrac{8}{1-\sqrt{5}}=\dfrac{2\sqrt{10}.\left(1-\sqrt{5}\right)+\sqrt{2}.\sqrt{5}\left(1-\sqrt{5}\right)+8.\sqrt{5}}{\sqrt{5}\left(1-\sqrt{5}\right)}\)
= \(\dfrac{2\sqrt{10}-2\sqrt{10}.\sqrt{5}+\sqrt{10}-\sqrt{10}.\sqrt{5}+8\sqrt{5}}{\sqrt{5}\left(1-\sqrt{5}\right)}\) = \(\dfrac{2\sqrt{10}-2\sqrt{50}+\sqrt{10}-\sqrt{50}+8\sqrt{5}}{\sqrt{5}\left(1-\sqrt{5}\right)}=\dfrac{3\sqrt{10}-3\sqrt{50}+8\sqrt{5}}{\sqrt{5}\left(1-\sqrt{5}\right)}\)