Bài 1 : Giải bất phương trình sau
1 , \(\left(2x+3\right)\left(5x-7\right)\ge0\)
2 , \(\left(3-2x\right)\left(4x+3\right)< 0\)
3 , \(\left(2x+5\right)\left(3-x\right)\left(5x-1\right)\le0\)
4 , \(x^2-3x+2< 0\)
5 , \(-x^2+12x+13>0\)
6 , \(x^2+6x+9\le0\)
7 , \(\frac{x+2}{3x+1}>\frac{x-2}{2x-1}\)
8 , \(\frac{1}{x+2}< \frac{3}{x-3}\)
9 , \(\frac{5x-6}{2x-5}\le6\)
10 , \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)
Bài 4 Giải các bất phương trình sau :
31 , \(\frac{-3x^2-x+4}{x^2+3x+5}>0\)
32 , \(\frac{4x^2+3x-1}{x^2+5x+7}>0\)
33 , \(\frac{5x^2+3x-8}{x^2-7x+6}< 0\)
34 , \(\frac{2x-5}{x^2-6x-7}< \frac{1}{x-3}\)
35 , \(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)
Bài 2 : Giải các bất phương trình sau :
11 , \(\left(2x-7\right)\left(4-5x\right)\ge0\)
12 , \(x^2-x-20>2\left(x-11\right)\)
13 , \(3x\left(2x+7\right)\left(9-3x\right)\ge0\)
14 , \(x^3+8x^2+17x+10< 0\)
15 , \(x^3+6x^2+11x+6>0\)
16 , \(\frac{\left(2x-5\right)\left(x+2\right)}{-4x+3}>0\)
17 , \(\frac{x-3}{x+1}>\frac{x+5}{x-2}\)
18 , \(\frac{x-3}{x+5}< \frac{1-2x}{x-3}\)
19 , \(\frac{3x-4}{x-2}>1\)
20 , \(\frac{2x-5}{2-x}\ge-1\)
bài 1: giải các bất phương trình sau:
1) (x-3)(4-x)≥0
2) \(\frac{1+2x}{3x-4}< 0\)
3) (x+1)(x-1)(3x-6)>0
4) 3x(2x+7)(9-3x)≥0
5) \(\frac{\left(2x-5\right)\left(x+2\right)}{-4x+3}>0\)
6) \(\frac{2}{x-1}\le\frac{5}{2x-1}\)
7) \(\frac{x-3}{x+1}>\frac{x+5}{x-2}\)
8) \(\frac{2x^2+x}{1-2x}\ge1-x\)
Bài 3 : giải các bất phương trình sau
21 , \(\frac{2}{x-1}\le\frac{5}{2x-1}\)
22, \(\frac{-4}{3x+1}< \frac{3}{2-x}\)
23 , \(\frac{2x^2+x}{1-2x}\ge1-x\)
24 , \(\frac{2x-5}{3x+2}< \frac{3x+2}{2x-5}\)
25 , \(2x^2-5x+2< 0\)
26 , \(-5x^2+4x+12< 0\)
27 , \(16x^2+40x+25>0\)
28 , \(-2x^2+3x-7\ge0\)
29 , \(3x^2-4x+4\ge0\)
30 , \(x^2-x-6\le0\)
Giải các bất phương trình sau:
a) \(\frac{x^2-9x+14}{x^2+9x+14}\ge0\)
b) \(\frac{x^2+1}{x^2+3x-10}< 0\)
c) \(\frac{10-x}{5+x^2}>\frac{1}{2}\)
d) \(\frac{x+1}{x-1}+2>\frac{x-1}{x}\)
e) \(\frac{1}{x+1}+\frac{2}{x+3}\le\frac{3}{x+2}\)
f) \(\frac{x-3}{x+1}-\frac{x-2}{x-1}\le\frac{x^2+4x+15}{x^2-1}\)
g) \(\frac{x^2-4x+3}{x^2-2x}\ge0\)
h) \(\frac{x+2}{3x+1}\le\frac{x-2}{2x-1}\)
i) \(\frac{11x^2-5x+6}{x^2+5x+6}\le x\)
j) \(\frac{\left(1-2x\right)\left(\sqrt{3}x+1\right)}{2\sqrt{2}x-1}\ge0\)
k) \(\frac{\left(5x+1\right)-\left(7x-2\right)}{\left(-x^2-1\right)\left(x^2-4x+4\right)}\le0\)
l) \(\frac{1}{x^2-7x+5}\ge\frac{1}{x^2+2x+5}\)
m) \(\frac{\left(x-1\right)\left(x^3-1\right)}{x^2+\left(1+2\sqrt{2}\right)x+2+\sqrt{2}}\le0\)
Giải các hệ bất phương trình:
a) \(\left\{{}\begin{matrix}4x^2-5x-6\le0\\\left(1-x^2\right)\left(4x^2-12x+5\right)>0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-x-2\ge0\\2x^2-11x+9< 0\\x^3-x^2+2x-2>0\end{matrix}\right.\)
c) \(-3\le\frac{x^2-3x-1}{x^2+x+1}< 3\)
1)|4-x2|=-3x2+4x+4
2)|x×(x+2)|=|x|
3)|x2-4x-5|=4x-17
4)|x2-6x+5|=x+5
5)|x2-4|+|x|=1
6)|x2-5x-5|=1
giải các bất phương trình sau:
a) 2x-\(\frac{4x}{1-x}< \frac{4}{x-1}-2\)
b) \(\frac{2}{x-1}\le\frac{5}{2x-1}\)
c) \(\frac{3}{3x^2+x-4}\ge\frac{1}{x^2-4}\)
d) (x-2)(9-x2)≤0
e) (x2-x-6)(x2-3x+2)≥0