1) 2xy2+x2y4+1=(xy2)2+2xy2.1+12=(xy2+1)2
2)
a)2(x-y)(x+y)+(x+y)2+(x-y)2=(x+y+x-y)2=(2x)2=4x2
b)(x-y+z)2+(z-y)2+2(x-y+z)(y-z)
=(x-y+z)2+(y-z)2+2(x-y+z)(y-z)
=(x-y+z+y-z)2
=x2
1) 2xy2+x2y4+1=(xy2)2+2xy2.1+12=(xy2+1)2
2)
a)2(x-y)(x+y)+(x+y)2+(x-y)2=(x+y+x-y)2=(2x)2=4x2
b)(x-y+z)2+(z-y)2+2(x-y+z)(y-z)
=(x-y+z)2+(y-z)2+2(x-y+z)(y-z)
=(x-y+z+y-z)2
=x2
Rút gọn : \(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) biết rằng \(x+y+z=0\)
Bài 1:
a, Cho ba số x,y,z đôi một khác nhau. Chứng minh rằng:
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)
cho 3 số dương x,y,z thỏa mãn : \(x+y+z=xyz\)
CMR : \(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Rút gọn
a) \(x.\left(x+4\right).\left(x-4\right)-\left(x^2+1\right).\left(x-1\right)\)
b) \(\left(y-3\right).\left(y+3\right).\left(y^2+9\right)-\left(y^2+2\right).\left(y^2-2\right)\)
Phân tích đa thức thành nhân tử :
\(a,\left(x+y\right)^5-x^5-y^5\)
\(b,\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)
\(c,x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\).
Cộng các phân thức đại số :
\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
Cho \(x+y+z=1\) Chứng minh \(x^3+y^3+z^3-3xyz=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)
chứng minh \(x^2\cdot\left(1+y^2\right)+y^2\cdot\left(1+z^2\right)+z^2\cdot\left(1+x^2\right)\ge6\cdot x\cdot y\cdot z\)
cho \(x^2-y=a:y^2-z=b\) với \(z^2-x=c\) (a,b ,c là hằng số )
CMR giá ttri của biểu thức P không phụ thuộc vào giá trị của biểu thức x,y,z
\(P=x^3.\left(z-y^2\right)+y^3.\left(x-z^2\right)+z^3.\left(y-x^2\right)+xyz.\left(xyz-1\right)\)
các bạn làm hộ mình nha