Bài 2:
\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{101}\)
\(\Leftrightarrow A=\dfrac{100}{101}\)
Vậy ...
\(B=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+\dfrac{1}{13.16}\)
\(\Leftrightarrow B=\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right)\)
\(\Leftrightarrow B=\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{16}\right)\)
\(\Leftrightarrow B=\dfrac{1}{3}.\dfrac{15}{16}\)
\(\Leftrightarrow B=\dfrac{5}{16}\)
Vậy ...
Bài 1:
B=\(\dfrac{\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}\right)}{\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}\right)}\)
\(=\dfrac{\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}\right)}{\left(1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}\right)}\)
\(=\dfrac{\left(\dfrac{2^4+2^3+2^2+2+1}{2^4}\right)}{\left(2^4-2^3+2^2-2+1\right)}\)
\(=\dfrac{\left(2^3+2\right)\left(2+1\right)+1}{2^4}.\dfrac{2^4}{\left(2^3+2\right)\left(2-1\right)}\)
\(=\dfrac{2\left(2^2+1\right)\left(2+1\right)+1}{2\left(2^2+1\right)\left(2-1\right)+1}\)
\(=\dfrac{2.5.3+1}{2.5.1+1}\)
\(=\dfrac{31}{11}\)
\(=2,\left(81\right)\)
Bài 2:
A= \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
=\(\dfrac{1}{1}-\dfrac{1}{101}\)
=\(\dfrac{100}{101}\)
B=\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+\dfrac{1}{13.16}\)
2B=\(2\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{13.16}\right)\)
=\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{16}\)
=\(\dfrac{1}{1}-\dfrac{1}{16}\)
=\(\dfrac{15}{16}\)
\(\Leftrightarrow\)B=\(\dfrac{\dfrac{15}{16}}{2}\)
=\(\dfrac{15}{32}\)