Bài 1b:
\(\left|x+1\right|+\left|x\right|+\left|x+2\right|=4x\)
Mà \(\left|x+1\right|+\left|x\right|+\left|x+2\right|\ge0\)
\(\Rightarrow4x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+1+x+x+2=4x\)
\(\Rightarrow x=3\)
Vậy x = 3
Bài 2:
\(\left|a+1\right|+\left|b-2\right|+\left|c+3\right|\le0\)
\(\Rightarrow\left\{\begin{matrix}a+1\le0\\b-2\le0\\c+3\le0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a\le-1\\b\le2\\c\le-3\end{matrix}\right.\)
Vậy....
Bài 3:
Ta có: \(\left|x-3\right|+2\left|y-1\right|+3\left|z+5\right|\ge0\)
\(\Rightarrow M=\left|x-3\right|+2\left|y-1\right|+3\left|z+5\right|-6\ge-6\)
Vậy \(MIN_M=6\) khi \(x=3;y=1;z=-5\)
1.a) 11- ( -53 + x ) = 2x + 5
=>11+53-x=2x+5
=>11+53 -x -2x +5 =0
=>(11+53+5)+(-x-2x)=0
=>69-3x=0
=>-3x=-69
=>x=23
kl.....