a ) \(x^2-25-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5-1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
b ) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(2x-1\right)-\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
c ) \(x^2\left(x^2+4\right)-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x^2=-4\left(VL\right)\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)