Cho 3 số x,y,z khác 0 thoả mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
Câu 1:
Giá trị nhỏ nhất của biểu thức C là \(\frac{1}{3}\left(x-\frac{2}{5}\right)^2\) + |2y+1| - 2,5
Câu 2:
Cho 2 số x,y thỏa mãn (2x +1)2 + |y-1,2| = 0. Giá trị x,y?
Câu 3:
Giá trị x = __ thì biểu thức D = \(\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2\) - |8x -1| + 2016 đạt giá trị lớn nhất?
Câu 4:
Các số tự nhiên n thỏa mãn \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
Cách giải luôn nhé!
Cho 2 số x;y thỏa mãn \(\left|\left(3x+4\right)^2+\left|y-5\right|\right|=1\) . Số cặp x;y thỏa mãn là.?.
tính giá trị biểu thức
D= \(x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^{^{ }2}+2\left(x+y\right)+3\) tại x,y thỏa mãn x+y+1=0
Tìm giá trị nhỏ nhất của :
G = \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-2021\right|\)
Giá trị x > 0 thỏa mãn: \(\frac{11}{14}+\left|\frac{2}{7}-x\right|-\frac{5}{2}=\frac{4}{3}\)
Cho đa thức: \(A=\dfrac{1}{2}x^2y.\left(-2xy^2\right)^2+3x^2y^3.\left(x^2y^2\right)\)
Thu gọn đa thức A rồi tính giá trị của đa thức A tại x;y thỏa mãn:
\(\left(x-2\right)^{18}+\left|y+1\right|=0\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm x, y, zϵ R biết: \(\left(4x^2-4x+1\right)^{2022}+\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)