Bài 2:
Ta có:\(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)
Áp dụng BĐT Cô-si: \(3\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)
\(\Rightarrow x+y\ge2\)
Và: \(\left\{{}\begin{matrix}\frac{x^2}{y}+y\ge2x\\\frac{y^2}{x}+x\ge2y\end{matrix}\right.\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)
Vậy \(Min_P=2\) \(\Leftrightarrow x=y=1\)