Bài 1:
Ta thấy : \(\left\{\begin{matrix}\left(x-3\right)^2\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left|y+1\right|\ge0\)
\(\Rightarrow\left(x-3\right)^2+\left|y+1\right|-3\ge-3\)
\(\Rightarrow A\ge-3\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}\left(x-3\right)^2=0\\\left|y+1\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-3=0\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy \(Min_A=-3\) khi \(\left\{\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Bài 2:
\(S=1\cdot2\cdot3+2\cdot3\cdot4+...+97\cdot98\cdot99\)
\(4S=4\left(1\cdot2\cdot3+2\cdot3\cdot4+...+97\cdot98\cdot99\right)\)
\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+97\cdot98\cdot99\left(100-96\right)\)
\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+97\cdot98\cdot99\cdot100-96\cdot97\cdot98\cdot99\)
\(4S=97\cdot98\cdot99\cdot100\Rightarrow S=\frac{97\cdot98\cdot99\cdot100}{4}=23527350\)