Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Yến Nhi

1) Tìm các cặp số nguyên (x,y) sao cho \(\frac{x}{16}-\frac{1}{y}=\frac{1}{32}\)

2) Cho A=\(\frac{1}{1.21}+\frac{1}{2.22}+\frac{1}{3.23}+...+\frac{1}{80.100}\)

B=\(\frac{1}{1.81}+\frac{1}{2.82}+\frac{1}{3.83}+...+\frac{1}{20.100}\) Tính:\(\frac{A}{B}\)

Nguyễn Việt Lâm
15 tháng 5 2019 lúc 10:24

Câu 2:

\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{3.23}+...+\frac{20}{80.100}\)

\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)

\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{100}\right)\)

\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\) (1)

Lại có:

\(B=\frac{1}{1.81}+\frac{1}{2.82}+...+\frac{1}{20.100}\)

\(\Rightarrow80B=\frac{80}{1.81}+\frac{80}{2.82}+...+\frac{80}{20.100}\)

\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+...+\frac{1}{20}-\frac{1}{100}\)

\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(2)

Từ (1) và (2) suy ra \(20A=80B\)

\(\Rightarrow\frac{A}{B}=\frac{80}{20}=4\)

Nguyễn Việt Lâm
15 tháng 5 2019 lúc 10:29

Câu 1:

\(\frac{x}{16}-\frac{1}{y}=\frac{1}{32}\)

\(\Leftrightarrow\frac{xy-16}{16y}=\frac{1}{32}\)

\(\Leftrightarrow\frac{xy-16}{y}=\frac{1}{2}\)

\(\Leftrightarrow2xy-32=y\)

\(\Leftrightarrow\left(2x-1\right).y=32\)

Tới đây ta nhận xét do \(2x-1\) luôn lẻ với mọi x nguyên nên \(2x-1\) là ước lẻ của 32

\(\Rightarrow2x-1=\left\{1;-1\right\}\)

Vậy: \(\left\{{}\begin{matrix}2x-1=1\\y=32\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=32\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-1=-1\\y=-32\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-32\end{matrix}\right.\)

Có 2 cặp số nguyên thỏa mãn là \(\left(x;y\right)=\left(1;32\right);\left(0;-32\right)\)


Các câu hỏi tương tự
Trần Đình Dủng
Xem chi tiết
Lê Minh Trang
Xem chi tiết
Thắng Nguyễn
Xem chi tiết
Lê Minh Trang
Xem chi tiết
Lê Tiến Đạt
Xem chi tiết
Hoàng Thị Trâm
Xem chi tiết
Lê Minh Trang
Xem chi tiết
Võ Thị Huệ
Xem chi tiết
Phạm Ninh Đan
Xem chi tiết