Câu 2:
\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{3.23}+...+\frac{20}{80.100}\)
\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)
\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{100}\right)\)
\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\) (1)
Lại có:
\(B=\frac{1}{1.81}+\frac{1}{2.82}+...+\frac{1}{20.100}\)
\(\Rightarrow80B=\frac{80}{1.81}+\frac{80}{2.82}+...+\frac{80}{20.100}\)
\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+...+\frac{1}{20}-\frac{1}{100}\)
\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(2)
Từ (1) và (2) suy ra \(20A=80B\)
\(\Rightarrow\frac{A}{B}=\frac{80}{20}=4\)
Câu 1:
\(\frac{x}{16}-\frac{1}{y}=\frac{1}{32}\)
\(\Leftrightarrow\frac{xy-16}{16y}=\frac{1}{32}\)
\(\Leftrightarrow\frac{xy-16}{y}=\frac{1}{2}\)
\(\Leftrightarrow2xy-32=y\)
\(\Leftrightarrow\left(2x-1\right).y=32\)
Tới đây ta nhận xét do \(2x-1\) luôn lẻ với mọi x nguyên nên \(2x-1\) là ước lẻ của 32
\(\Rightarrow2x-1=\left\{1;-1\right\}\)
Vậy: \(\left\{{}\begin{matrix}2x-1=1\\y=32\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=32\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x-1=-1\\y=-32\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-32\end{matrix}\right.\)
Có 2 cặp số nguyên thỏa mãn là \(\left(x;y\right)=\left(1;32\right);\left(0;-32\right)\)