1/ so sánh
a) 812 và 128
Ta có: \(8^{12}=\left(8^3\right)^4=512^4\\ 12^8=\left(12^2\right)^4=144^4\)
vì 5124>1444 nên 812>128
b) (0,4)60và (-0,8)30
Gọi A= (0,4)60 và B= (-0,8)30
\(\Rightarrow\frac{A}{B}=\frac{\left(0,4\right)^{60}}{\left(-0,8\right)^{30}}=\frac{\left(0,1.2^2\right)^{60}}{\left(0,1.2^3\right)^{30}}=\frac{0,1^{60}.2^{120}}{0,1^{30}.2^{90}}=0,1^{30}.2^{30}=0,2^{30}>1\\ \Rightarrow A< B\)
e)\(A=\frac{20^{15}+1}{20^{16}+1}vàB=\frac{20^{16}+1}{20^{17}+1}\\ 20.A=20.\frac{20^{15}+1}{20^{16}+1}=\frac{20^{16}+20}{20^{16}+1}=\frac{20^{16}+1+19}{20^{16}+1}=\frac{20^{16}+1}{20^{16}+1}+\frac{19}{20^{16}+1}=1+\frac{19}{20^{16}+1}\left(1\right)\)
\(20.B=20.\frac{20^{16}+1}{20^{17}+1}=\frac{20^{17}+20}{20^{17}+1}=\frac{20^{17}+1+19}{20^{17}+1}=\frac{20^{17}+1}{20^{17}+1}+\frac{19}{20^{17}+1}=1+\frac{19}{20^{17}+1}\left(2\right)\)
Từ (1) và (2) ⇒ A>B
1)
a) \(8^{12}\) và \(12^8\)
Ta có:
\(8^{12}=\left(8^3\right)^4=512^4.\)
\(12^8=\left(12^2\right)^4=144^4.\)
Vì \(512>144\) nên \(512^4>144^4.\)
=> \(8^{12}>12^8.\)
Chúc bạn học tốt!