Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Vũ

1. Rút gọn \(A=\frac{\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}}{\sqrt{\left(\sqrt{5}+1\right)\cdot\sqrt{6-2\sqrt{5}}}}\)

2.Tính a) \(B=\left(\sqrt[3]{2}+1\right)^3\cdot\left(\sqrt[3]{2}-1\right)^3\)

b)Tìm C=\(a^3b-ab^3\) với \(a=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\); \(b=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)

3. Giải \(\left|x^2-x+1\right|-\left|x-2\right|=6\)

Akai Haruma
10 tháng 9 2020 lúc 15:09

Bài 1:
Xét tử số:

\(\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}=\sqrt{3^2+5+2.3\sqrt{5}}-\sqrt{3^2+5-2.3\sqrt{5}}\)

\(=\sqrt{(3+\sqrt{5})^2}-\sqrt{(3-\sqrt{5})^2}=3+\sqrt{5}-(3-\sqrt{5})=2\sqrt{5}\)

Xét mẫu số:
\(\sqrt{(\sqrt{5}+1)\sqrt{6-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{5+1-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{(\sqrt{5}-1)^2}}\)

\(=\sqrt{(\sqrt{5}+1)(\sqrt{5}-1)}=\sqrt{4}=2\)

Do đó: $A=\frac{2\sqrt{5}}{2}=\sqrt{5}$

Akai Haruma
10 tháng 9 2020 lúc 15:34

Bài 2:

a)

$B=(\sqrt[3]{2}+1)^3(\sqrt[3]{2}-1)^3$
$=[(\sqrt[3]{2}+1)(\sqrt[3]{2}-1)]^3$
$=(\sqrt[3]{4}-1)^3$

$=3-3\sqrt[3]{16}+3\sqrt[3]{4}$

b)

Với $a,b$ đã cho ta đặt $\sqrt[3]{2}=x$. Khi đó:

\(a=\frac{6}{2x-2+\frac{2}{x}}=\frac{3x}{x^2-x+1}=\frac{3x(x+1)}{x^3+1}=\frac{3x(x+1)}{2+1}=x(x+1)\)

\(b=\frac{2}{2x+2+\frac{2}{x}}=\frac{x}{x^2+x+1}=\frac{x(x-1)}{x^3-1}=\frac{x(x-1)}{2-1}=x(x-1)\)

Khi đó:

$C=a^3b-ab^3=ab(a^2-b^2)=ab(a-b)(a+b)$

$=x^2(x^2-1)(2x)(2x^2)=4x^5(x^2-1)=8\sqrt[3]{4}(\sqrt[3]{4}-1)$

Akai Haruma
10 tháng 9 2020 lúc 15:51

Bài 3:

Ta biết rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ với mọi $x\in\mathbb{R}$

Do đó:

$|x^2-x+1|-|x-2|=6$

$\Leftrightarrow x^2-x+1-|x-2|=6(*)$

Nếu $x\geq 2$ thì $(*)\Leftrightarrow x^2-x+1-(x-2)=6$

$\Leftrightarrow x^2-2x-3=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x=3$ (do $x\geq 2$)

Nếu $x< 2$ thì $(*)\Leftrightarrow x^2-x+1-(2-x)=6$

$\Leftrightarrow x^2-7=0$

$\Rightarrow x=-\sqrt{7}$ (do $x< 2$)

Vậy........

Akai Haruma
10 tháng 9 2020 lúc 18:16

Nguyễn Hoàng Vũ:

Đặt \(\sqrt[3]{2}+1=a; \sqrt[3]{2}-1=b\)

Khi đó: \(a+b=2\sqrt[3]{2}; ab=\sqrt[3]{4}-1\)

\((\sqrt[3]{2}+1)^3+(\sqrt[3]{2}-1)^3=a^3+b^3=(a+b)^3-3ab(a+b)\)

\(=(2\sqrt[3]{2})^3-3(\sqrt[3]{4}-1).2\sqrt[3]{2}=16-(12-6\sqrt[3]{2})=4+6\sqrt[3]{2}\)


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
Anh Minh
Xem chi tiết
Đại Số Và Giải Tích
Xem chi tiết
Hỏi Làm Gì
Xem chi tiết
Tdq_S.Coups
Xem chi tiết
bach nhac lam
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
zZz Nguyễn zZz
Xem chi tiết