Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bạch An Nhiên

1) Phân tích đa thức thành nhân tử
a) x^3 - x^2y - xy^2 + y^3
b) x^3 + x^2 - 4x - 4
c) x^3 - x^2 - x + 1
d) ( 7x + 3 ) ^2 - ( 2x - 1 )^2
e) x^3 - 3x^2 - 3x + 1
f) x^2 - 2x - 3
g) x^2 - 2x - 8
h) x^2 - 10x + 21
i) x^2 - 4xy + 3y^2

Nguyễn Huy Tú
28 tháng 7 2017 lúc 9:17

a, \(x^3-x^2y-xy^2+y^3\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x^2-y^2\right)\left(x-y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

b, \(x^3+x^2-4x-4\)

\(=x^2\left(x+1\right)-4\left(x+1\right)\)

\(=\left(x^2-4\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)

c, \(x^3-x^2-x+1\)

\(=x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)\)

\(=\left(x-1\right)^2\left(x+1\right)\)

d, \(\left(7x+3\right)^2-\left(2x-1\right)^2\)

\(=\left(7x+3-2x+1\right)\left(7x+3+2x-1\right)\)

\(=\left(5x+4\right)\left(9x+2\right)\)

e, \(x^3-3x^2-3x+1\) sai đề

f, \(x^2-2x-3\)

\(=x^2-3x+x-3=x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x+1\right)\left(x-3\right)\)

g, \(x^2-2x-8\)

\(=x^2-4x+2x-8=x\left(x-4\right)+2\left(x-8\right)\)

\(=\left(x+2\right)\left(x-8\right)\)

h, \(x^2-10x+21\)

\(=x^2-7x-3x+21\)

\(=x\left(x-7\right)-3\left(x-7\right)=\left(x-3\right)\left(x-7\right)\)

i, \(x^2-4xy+3y^2\)

\(=x^2-4xy+4y^2-y^2\)

\(=\left(x-2y\right)^2-y^2\)

\(=\left(x-2y-y\right)\left(x-2y+y\right)\)

\(=\left(x-3y\right)\left(x-y\right)\)

Trần Đăng Nhất
28 tháng 7 2017 lúc 9:26

a) \(x^3 - x^2y - xy^2 + y^3\)

\(=\left(x^3-x^2y\right)-\left(xy^2-y^3\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

b) \(x^3 + x^2 - 4x - 4\)

\(=\left(x^3+x^2\right)-\left(4x+4\right)\)

\(=x^2\left(x+1\right)-4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4\right)\)

\(=\left(x+1\right)\left(x^2-2^2\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\)