4 câu 1,3,4,5 giống nhau, mình làm 1 câu và bạn dựa vào đó tự xử lý mấy câu còn lại nhé
1/ \(I=\int sin2x.e^{3x}dx\) \(\Rightarrow\left\{{}\begin{matrix}u=sin2x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2cos2x.dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}\int cos2x.e^{3x}dx=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}I_1\)
Xét \(I_1=\int cos2x.e^{3x}dx\) \(\Rightarrow\left\{{}\begin{matrix}u=cos2x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-2sin2xdx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I_1=\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}\int sin2x.e^{3x}dx=\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}I\)
\(\Rightarrow I=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}\left(\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}I\right)\)
\(\Rightarrow\dfrac{13}{9}I=\dfrac{1}{9}e^{3x}\left(3sin2x-2cos2x\right)\)
\(\Rightarrow I=\dfrac{1}{13}e^{3x}\left(3sin2x-2cos2x\right)+C\)
3/ \(\int e^x\left(\dfrac{1+cos2x}{2}\right)dx=\dfrac{1}{2}\int e^xdx+\dfrac{1}{2}\int cos2x.e^xdx=\dfrac{e^x}{2}+\dfrac{1}{2}I_1\)
\(I_1\) có cách tính y hệt như bài 1, bạn nguyên hàm từng phần 2 lần là xong
4/ Cũng hạ bậc tương tự câu trên và xử lý
5/ \(I=\int e^{-x}\left(\dfrac{cos3x+3cosx}{4}\right)dx=\dfrac{1}{4}\int e^{-x}\left(cos3x+3cosx\right)dx\)
\(\Rightarrow I=\dfrac{1}{4}\int e^{-x}cos3x.dx+\dfrac{3}{4}\int e^{-x}cosx.dx=I_1+I_2\)
Dùng phương pháp tương tự bài 1, lần lượt tính \(I_1\) và \(I_2\) rồi cộng vào
2/\(I=\int\dfrac{x^4}{\left(x^2-1\right)^2}dx=\int\left(1+\dfrac{2x^2-1}{\left(x^2-1\right)^2}\right)dx=\int\left(1+\dfrac{2}{x^2-1}+\dfrac{1}{\left(x^2-1\right)^2}\right)dx\)
\(=\int\left(1+\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{1}{4}\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)^2\right)dx\)
\(=\int\left(1+\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{1}{4}\left(\dfrac{1}{\left(x-1\right)^2}+\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{x+1}-\dfrac{1}{x-1}\right)\right)dx\)
\(=\int\left(1+\dfrac{3}{4}\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)+\dfrac{1}{4}\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{4}\dfrac{1}{\left(x-1\right)^2}\right)dx\)
\(=x+\dfrac{3}{4}ln\left|\dfrac{x-1}{x+1}\right|-\dfrac{1}{4\left(x+1\right)}-\dfrac{1}{4\left(x-1\right)}+C\)
\(=x+\dfrac{3}{4}ln\left|\dfrac{x-1}{x+1}\right|-\dfrac{x}{2\left(x^2-1\right)}+C\)