\(\frac{125^{2^{ }}.5^4}{25^{4^{ }}}\)
\(\frac{81^{2^{ }}.27^3}{9^8}\)
Tìm n∈Z biết :
a,27n/3n
b,\(\frac{25}{5^n}\)=5
c,\(\frac{81}{\left(-3\right)^n}=-243\)
d,\(\frac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)
e,(\(\frac{1}{3}\))n=\(\frac{1}{81}\)
f,\(\left(\frac{-3}{4}\right)^n=\frac{81}{256}\)
g,\(\frac{-512}{343}=\left(\frac{-8}{7}\right)^n\)
h,5-1*25n=125
k,3-1*3n+6*3n-1=7*36
\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(\sqrt{\frac{25}{81}}:2\frac{2}{5}-4\frac{5}{9}:2\frac{2}{5}\)
\(6.\left(-\frac{-1}{2}\right)^2+\frac{3}{5}\)
a, 1\(\frac{2}{3}\) + |\(\frac{-3}{7}\)| . \(\sqrt{\left(-7\right)}^2\)- 2020\(^5\) . \(\sqrt{\frac{25}{9}}\)
b, ( x + \(\frac{1}{2}\) )\(^3\) : 3 = \(\frac{-1}{81}\)
c, \(\frac{x-2}{2}\) = \(\frac{8}{x-2}\) ( với x khác 2 )
a,\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
b,\(\frac{27^2.8^5}{6^6.32^3}+\frac{3^4.4^4}{2^2.6^2}\)
c,\(\left(1+\frac{1}{1.3}\right)\)\(\left(1+\frac{1}{2.4}\right)\)\(\left(1+\frac{1}{3.5}\right)\)........\(\left(1+\frac{1}{20.22}\right)\)
d,\(\frac{3}{2}\)+\(\frac{7}{6}\)+\(\frac{13}{12}+\frac{21}{20}+.....+\frac{91}{90}\)
e,\(\left(-2^2\right)+\sqrt{36}-\sqrt{9}+\sqrt{25}\) 20).20)
\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
CMR:
a) \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}< \frac{1}{2}\)
b) \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\)
Rút gọn
a)\(\frac{25^{5^{ }}.5^{10}}{100^5}.\frac{4^6.9^5+6^9.120}{8^4.3^{12^{ }}-6^{11}}\)
b)\(\left(\frac{4}{9}+\frac{1}{3}\right)^2+\left(\frac{3}{4}\right)^2:\left(\frac{3}{4}\right)^2:\left(-\frac{2}{3}\right)^3\)
c) (273 : 33) : \(\left[\left(\frac{3}{5}\right)^{15}:\left(\frac{9}{25}\right)^5\right]\)
CÁC BẠN GIÚP MIH VỚI
Thực hiện phép tính: \(A=2010.\left(\frac{\frac{1}{6}+0.25-\frac{1}{8}}{1+1\frac{1}{2}-\frac{3}{4}}+\frac{0.4-\frac{2}{9}+\frac{2}{11}}{3-\frac{15}{9}+1\frac{4}{11}}\right)\)