cho hình thang cân ABCD(AB<CD); AB//CA và AB=AD. Hai đường thẳng AD và BC cắt nhau tại E. Biết ED=15cm, DC=10cm
a, CM: DB là tia phan giác của góc ADC
b, tính BE và BC
c, Đường thẳng song song với đáy AB cắt các đoạn thẳng AD, BC và đường chéo BD, AC lần lượt tại M, Q,N,P. Chứng minh: \(\frac{DN}{BD}=\frac{CP}{AC}\)
d, Chứng minh: MN=PQ
Cho tam giác ABC vuộng tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH (H thuộc BC)
a, Chứng minh: Tam giác HBA đồng dạng Tam giác ABC
b, C/minh: AH . BC = AB . AC
c, Tính độ dài các đoạn thẳng BC, AH.
d, Trong ABC kẻ phân giác AD ( D thuộc BC). Trong ADB kẻ phân giác DE (E thuộc AB); trong ADC kẻ phân giác DF (F thuộc AC). CMR: \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=1\)
Cho tam giác ABC vuông tại A có AB= 12cm; AC= 16cm; kẻ đường cao Ah.
a) Chứng minh: tam giác ABC đồng dạng với tam giác HBA.
b) Tính BC, AH.
c) Vẽ phân giác AD của tam giác ABC. Tính BD, DC.
d) Vẽ phân giác DE của tam giác ADB; vẽ phân giác DF của tam giác ADC. Chứng minh: \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=1\)
Cho tam giác ABC có góc B, C nhọn, đường phân giác AD. Biết \(AD=AB=\sqrt{5}\), BD=2cm. Tính độ dài DC
Cho △ ABC,điểm I nằm trong tam giác,các tia AI,BI,CI cắt cạnh BC,AC,AB theo thứ tự tự ở D,E,F .Qua A kẻ đường thẳng song song với BC cắt tia CI tại H và cắt tia BI tại K .Chứng minh :
a)\(\frac{AK}{BD}=\frac{HA}{DC}\)
b)\(\frac{FA}{BF}+\frac{AE}{CE}=\frac{AI}{ID }\)
Giúp tớ với mai tớ thi kiểm tra 1 tiết T_T. Giúp được câu nào thì giúp nha mai tớ thi T_T
Đề I/
1.
a, Tính diện tích Hình chữ nhật có chiều rộng 5cm, chiều dài 8cm.
b, Tính diện tích Hình Thang ABCD , biết hai đáy AB = 5cm, CD = 9cm và đường cao AH = 6cm.
2. Một đường thẳng // với cạnh BC và cắt 2 cạnh AB, AC của ΔABC lần lượt tại M và N. Biết AM = 4cm, AN = 8cm, MB = 3cm.
a, Tính NC
b, Tính tỉ số diện tích của hai ΔAMN và ΔABC
3. ΔABC có AB = 3cm, AC = 5cm , BC = 7cm, đường phân giác  cắt cạnh BC ở D. Tính BD và DC.
4. Cho ΔABC vuông tại A , đường cao AH. Chứng minh :
a, ΔABC ∼ ΔAHC
b, AB.AC = AH.BC
c, \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)
Đề II/
1. Viết tỉ số của các cặp đoạn thẳng có độ dài như sau :
a, AB = 7cm và CD = 14cm
b, MN = 2dm và PQ = 10cm
2. Xem hình bên dưới : biết AB = 4cm, AC = 6cm và AD là phân giác của Â
a, Tính \(\frac{DB}{DC}\)
b, Tính DB khi DC = 3cm Cho ΔABC có AB = 4cm , AC = 6cm. Trên cạnh AB và AC lần lượt lấy điểm D và điểm E sao cho AD = 2cm, AE = 3cm. Chứng minh DE // BC
4. Cho ΔMNP vuông ở M và đường cao MK
a, Chứng minh ΔKNM ∼ ΔMNP ∼ ΔKMP
b, Chứng minh MK2 = NK.KP
c, Tính MK, tính diện tích ΔMNP. Biết NK = 4cm, KP = 9cm
Cho tam giác ABC vuông tại A. Kẻ đường cao AH (H \(\varepsilon\)BC ), đường phân giác
BD của góc ABC cắt AH tại E (E \(\varepsilon\)AH )và cắt AC tại D (D thuộc AC)
a) Chứng minh tam giác HAB ~ tam giác ABC . Từ đó suy ra \(BA^2\)=BH. BC
b) Biết AB =12cm, AC = 16cm . Tính AD .
c) Chứng minh \(\frac{DA}{DC}=\frac{BE}{BD}\)
Cho △ ABC . Trên cạnh BC lấy D sao cho \(\frac{DB}{DC}=\frac{1}{2}\). Đường thẳng qua D song song với AB cắt AC tại E , đường thẳng qua D song song với AC cắt AB tại F .
a) So sánh \(\frac{AF}{AB}và\frac{AE}{AC}\)
b) Gọi M là trung điểm của AC . Chứng minh EF // BM
B1: Cho hình thang ABCD có góc A = góc D = 90 độ , hai đường chéo AC và BD vuông góc với nhau tại I
a) C/m: \(\Delta ABD\sim\Delta DAC\)
b) Biết AB = 18 cm , DC = 32 cm . Tính AC
c) Qua I kẻ đường thẳng song song với AB cắt AD , BC tại M và N . C/m: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
help me !!!