Ôn tập chương I : Tứ giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phu

1. Cho hình vuông ABCD , E là điểm nằm trên CD. Gọi F là giao điểm của đường thẳng AE và BC. Qua E kẻ đường thẳng vuông góc với AE cắt đường thẳng CDtại K.

a. Chứng minh tam giác KAF vuông cân.

b. Chứng minh AF.(CK-CF)=BD.FK.

2. Cho tam giác ABC và điểm O nằm trong tam giác đó. Xác định vị trí O để OA.BC+OB.CA+OC.AB đạt GTNN.

Trần Quốc Khanh
25 tháng 3 2020 lúc 14:25

a/Xét \(\Delta ADK\&\Delta ABF\) có:

\(\widehat{ADK}=\widehat{ABF}=90\)

\(\widehat{DAK}=\widehat{BAF}\) ( cùng phụ góc DAE)

AD=AB

Suy ra: \(\Delta ADK=\Delta ABF\left(gn-cgv\right)\Rightarrow AK=AF\)

\(\RightarrowĐPCM\)

b/Ta có: \(CK-CF=DK+CD-CF\)(1)

Mà ta có DK=BF ( 2 cạnh t-ư) và CD=BC nên

\(\left(1\right)\Rightarrow CK-CF=BF-CF+BC=2BC\)

Vậy ta cần CM: \(2AF.BC=BD.FK\Leftrightarrow\frac{AF}{FK}=\frac{BD}{2BC}\)

Có KAF vuông cân nên \(FK=\sqrt{2}AF\Rightarrow\frac{AF}{FK}=\frac{AF}{\sqrt{2}AF}=\frac{1}{\sqrt{2}}\left(1\right)\)

Lại có ABCD là h/vuông nên BDC vuông cân nên

\(BD=\sqrt{2}BC\Rightarrow\frac{BD}{2BC}=\frac{\sqrt{2}BC}{2BC}=\frac{1}{\sqrt{2}}\left(2\right)\)

(1) và (2) suy ra ĐPCM

Khách vãng lai đã xóa
Trần Quốc Khanh
25 tháng 3 2020 lúc 14:39

2/ Cho AO cắt BC tại I, kẻ BE vuông góc AI

Ta có: \(S_{ABO}=\frac{1}{2}AO.BE\le\frac{1}{2}AO.BI\left(1\right)\)

Tương tự như trên ta cũng CM được: \(S_{AOC}\le\frac{1}{2}AO.CI\left(2\right)\)

Cộng (1) và (2) có: \(S_{ABOC}\le\frac{1}{2}AO.BC\)

\(\Rightarrow2S_{ABOC}\le OA.BC\left(3\right)\)

Tương tự ta cũng có: \(2S_{AOCB}\le OB.AC\left(4\right)\)

Và: \(2S_{AOBC}\le OC.AB\)(5)

Cộng \(\left(3\right),\left(4\right),\left(5\right)\Rightarrow4S_{ABC}\le OA.BC+OB.CA+OC.AB\)

Dấu bằng xảy ra khi O là trực tâm

Khách vãng lai đã xóa