1/ a/
A=\(2\sqrt{5}+3\sqrt{45}-\sqrt{500}\)
A=\(2\sqrt{5}+3\cdot3\sqrt{5}-10\sqrt{5}\)=\(2\sqrt{5}+9\sqrt{5}-10\sqrt{5}\)=\(\sqrt{5}\)
b/B=\(\dfrac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}-\sqrt{8}\)
B=\(\dfrac{\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}}{\sqrt{3}-1}-\sqrt{8}\)
B=\(\dfrac{\left|\sqrt{6}-\sqrt{2}\right|}{\sqrt{3}-1}-\sqrt{8}\)
B=\(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}-\sqrt{8}\)
B=\(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\sqrt{8}\)
B=\(\sqrt{2}-2\sqrt{2}\)
B=-\(\sqrt{2}\)