\(c,=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}=\sqrt{2}+\sqrt{3}\\ d,=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
c) \(\sqrt{5+2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\left|\sqrt{3}+\sqrt{2}\right|=\sqrt{3}+\sqrt{2}\)
d) \(\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
Yêu cầu: Tính/ rút gọn
c. $\sqrt{5+2\sqrt{6}}=\sqrt{3+2\sqrt{2.3}+2}=\sqrt{(\sqrt{3}+\sqrt{2})^2}$
$=\sqrt{3}+\sqrt{2}$
d. $\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3.1}+1}=\sqrt{(\sqrt{3}-1)^2}=\sqrt{3}-1$